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Abstract

Both supervised and unsupervised machine learning algorithms have been used
to learn partition-based index structures for approximate nearest neighbor (ANN)
search. Existing supervised algorithms formulate the learning task as finding a
partition in which the nearest neighbors of a training set point belong to the same
partition element as the point itself, so that the nearest neighbor candidates can
be retrieved by naive lookup or backtracking search. We formulate candidate set
selection in ANN search directly as a multilabel classification problem where the
labels correspond to the nearest neighbors of the query point, and interpret the
partitions as partitioning classifiers for solving this task. Empirical results suggest
that the natural classifier based on this interpretation leads to strictly improved
performance when combined with any unsupervised or supervised partitioning
strategy. We also prove a sufficient condition for consistency of a partitioning
classifier for ANN search, and illustrate the result by verifying this condition for
chronological k-d trees.

1 Introduction

Approximate nearest neighbor (ANN) search is a fundamental algorithmic problem. There is a large
body of literature on ANN search spanning several research communities, including the machine
learning community. Specifically, space-partitioning data structures—such as space-partitioning
trees (Friedman et al., 1976; Muja and Lowe, 2014; Dasgupta and Sinha, 2015) and data-dependent
hash tables (Indyk and Motwani, 1998; Datar et al., 2004; Weiss et al., 2009)—are machine learning
methods commonly used for ANN search.

In this article, we propose an intuitive theoretical framework for partition-based ANN search. In
particular, we formulate the candidate set selection directly as a multilabel classification problem
where the labels represent the indices of the nearest neighbors of the query point. This formulation
suggests that the performance of space-partitioning data structures can be improved by using them in
a theoretically justified fashion as partitioning classifiers (Devroye et al., 1996, Chapter 21) instead
of searching them under the earlier lookup-based paradigm. Our classification framework also
enables applying general purpose classifiers—such as a multilabel random forest—directly as an
index structure for ANN search.
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We start by reviewing the relevant background on ANN search and multilabel classification (Sec. 2),
and formulating candidate set selection in ANN search as a multilabel classification task (Sec. 3).
In Sec. 4 we define the natural (partitioning) classifier for the general multilabel classification task.
In Sec. 6 we show that interpreting the earlier lookup-based candidate set selection methods in the
multilabel classification framework of Sec. 3 suggests that they define a suboptimal classifier. Our
multilabel formulation also enables us to consider asymptotics in the standard statistical learning
framework: we establish a sufficient condition for consistency of a partitioning classifier for ANN
search (Sec. 7.1). As a concrete example (Sec. 7.2), we verify this condition for the chronological
k-d tree (Bentley, 1975) that was the first data structure proposed for accelerating nearest neighbor
search. To empirically validate the proposed framework, we show that using a natural classifier that
is aligned with the ANN task in conjunction with space-partitioning data structures proposed in the
literature leads to strictly improved empirical performance compared to the earlier lookup-based
candidate set selection methods (Sec. 8).

2 Background and notation

2.1 Approximate nearest neighbor search

Let the corpus points {cj}mj=1 and the query point x be vectors in Rd. We call the k corpus points
that are closest1 to the query point x its k nearest neighbors and denote the set of their indices by

NNk(x) := k−argmin
j=1,...,m

∥x− cj∥, (1)

where the notation k−argmin f means the set of k values for which the function f has the smallest
values, and ∥ ·∥ is the Euclidean distance. Other metrics, or—more generally—dissimilarity measures
can also be used to define the nearest neighbors.

The trivial solution to the problem of finding the nearest neighbors NNk(x) of the query point x
is to compute the distances to all the corpus points and sort these distances. However, when the
dimensionality of the data is high and the corpus size is large, this brute force solution is often too
slow if the application requires fast response times. The first data structure proposed for speeding
up nearest neighbor search was the k-d tree (Bentley, 1975). However, for high-dimensional data, a
k-d tree is not faster than the brute force approach for exact nearest neighbor search because of the
well-known curse of dimensionality that affects the non-parametric statistical methods—including
partitioning methods for nearest neighbor search—in general (Lee and Wong, 1977). Although the
query speed of index structures for exact nearest neighbor search degrades when the dimensionality
of the data increases so that they are not an improvement on the brute force approach, this problem
can be mitigated by allowing an approximate solution. This is why in modern high-dimensional
applications approximate nearest neighbor (ANN) search is typically used when a fast solution to the
nearest neighbor problem is required.

Algorithms for ANN search can be divided into three categories: graphs (Malkov et al., 2014; Malkov
and Yashunin, 2018; Iwasaki and Miyazaki, 2018; Baranchuk et al., 2019), quantization (Jegou
et al., 2010; Johnson et al., 2019; Sablayrolles et al., 2019), and space-partitioning methods. In this
article, we consider space-partitioning methods that can be further divided into tree-based (Muja and
Lowe, 2014; Dasgupta and Sinha, 2015; Jääsaari et al., 2019) and hashing-based (Datar et al., 2004;
Aumüller et al., 2019; Gong et al., 2020) algorithms that use trees and hash tables, respectively, as
index structures.

Space-partitioning algorithms for ANN search use an index structure to select a candidate set
S(x) ⊂ {1, . . . ,m} of potential nearest neighbors. They then calculate the exact distances between
the points in the candidate set and the query point, and return the k nearest points as the approximate
nearest neighbors. These algorithms will correctly retrieve a nearest neighbor j ∈ NNk(x) if and only
if it belongs to the candidate set. Thus, the recall of a space-partitioning algorithm can be written
as Rec(S(x)) := 1

k |NNk(x) ∩ S(x)|, where we denote the number of elements of the set A by |A|.
The performance of an approximate nearest neighbor algorithm is typically measured by its average
recall-query time tradeoff (see e.g. Aumüller et al. (2019) or Li et al. (2019))—i.e., the average query
time required to reach a certain average recall level on a set of test queries.

1In what follows, we assume that the ties are broken uniformly at random so that the query point always has
exactly k nearest neighbors.
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2.2 Multilabel classification

Consider a standard multi-label classification problem with m labels. Let X ∈ Rd be a random
variable and let L(X) ⊆ {1, . . . ,m} be the corresponding label set. Equivalently, the output variable
can be presented in binary encoding by defining Y ∈ {0, 1}m as an m-bit random vector, where

Yj =

{
1, if j ∈ L(X),

0 otherwise.
(2)

A multilabel classifier is an m-component function g = (g1, . . . , gm) : Rd → {0, 1}m that attaches
a label set to the value of the input variable X . Denote the training set that is assumed to be an
i.i.d. sample from the distribution of the pair (X,Y ) by Dn := {(Xi, Yi)}ni=1. When the classifier
g : Rd × {Rd × {0, 1}m}n → {0, 1}m is learned from the training set of size n, we denote it by
g(n)(x) := g(x,Dn). When the training set Dn is considered a random variable, the classifier g(n)
also becomes a random function.

The performance of the classifier is measured by a loss function L : {0, 1}m×{0, 1}m → R, and the
objective is to minimize the riskR(g) := E[L(g(X), Y )]. This risk is lower-bounded by the Bayes
risk R∗ = infg R(g), the minimizer of which is called the Bayes classifier.

The Bayes classifier for many common multilabel loss functions—such as Hamming loss, ranking
loss, precision, recall, and F -measures—is obtained by thresholding the conditional label probabilities
ηj(x) := P{Yj = 1 |X = x} (Dembczynski et al., 2010; Koyejo et al., 2015). This justifies the
standard plug-in approach of first estimating the conditional label probabilities2 by η̂1(x), . . . , η̂m(x),
and then defining the plug-in classifier as

g
(n)
j (x) :=

{
1, if η̂j(x) > τ

0, otherwise,
(3)

where τ ∈ [0, 1]; equivalently, the plug-in classifier can be written as the estimate of the label set
L(x) as L̂(x) := {j ∈ {1, . . . ,m} : η̂j(x) > τ}.
The multilabel classification problem is often solved by reducing it to a series of binary or multiclass
classification problems, and estimating the conditional label probabilities ηj(x) under this model.
(see, e.g., Menon et al. (2019) for a discussion of different reduction methods). In what follows, we
will employ the pick-all-labels (PAL) reduction (Reddi et al., 2019) where we separate each label
l ∈ L(xi) of the training set point xi into a multiclass (but single-label) training instance (xi, l), and
fit the classifier to this modified training set by minimizing a multiclass loss function.

3 Candidate set selection as a multilabel classification problem

Equipped with the above definitions, we are now in a position to formalize candidate set selection in
ANN search described in Sec. 2.1 as an instance of the multilabel classification problem described in
Sec. 2.2.

In the classical formulation of ANN search, the input–output pair is defined as (x, NNk(x)). It is
straightforward to observe that this is essentially an instance of the multilabel classification problem
where NNk(x)—i.e., the set of indices of the k nearest neighbors of the query point—is the label set
L(x). Assuming that the values of x are i.i.d. draws from the distribution of the random variable X
(the query distribution), the objective is to predict the value of the random variable Y (defined by (2)
with NNk(X) as a label set) given the value of the random variable X . A distinctive property of this
classification problem, which follows from the definition of the ANN task, is that the size of the label
set |L(x)| =

∑m
j=1 yj = k is constant for all queries.

Since the labels {1, . . . ,m} correspond to the indices of the corpus points, the classification decision
(3) where the probability estimates are thresholded corresponds to candidate set selection, and the
estimated label set L̂(x) corresponds to the candidate set S(x).

2More generally, instead of the conditional label probability estimates η̂1(x), . . . , η̂m(x), any score function
values s1(x), . . . , sm(x) for the labels can be learned and thresholded to make the classification decision. While
we will present all the results only for the version of the plug-in classifier that uses the probability estimates,
they readily generalize to the version of the plug-in classifier that uses the score function values.
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If no additional training data is available, the corpus itself can be used as a training set. More precisely,
in this case we interpret {cj}mj=1 as a sample from the query distribution, compute the k nearest
neighbors of the corpus points, and then use {(cj , yj)}mj=1 as a training set. Note that in this case
yjj = 1 for each j = 1, . . . ,m since each corpus point is the nearest neighbor of itself.

4 Partitioning classifiers

In this section, we first give a general definition of the partitioning classifier. We then define the
natural classifier—that is a special case of the partitioning classifier—for the single partition and for
the ensemble of partitions for the general multilabel classification problem described in Sec. 2.2.

Partitioning classifier is a general term for a classifier that is based on learning a partition of the
instance space and whose classification decision is based on the labels of the training set points that
belong to the same partition element as the query point. Partitioning classifiers can be divided into
two categories depending on whether the partition is flat or recursive. There is a vast literature on
recursive partitioning classifiers (i.e., classification trees), and gradient boosted trees (Friedman et al.,
2000; Friedman, 2001) are one of the most widely used and efficient classifiers (Chen and Guestrin,
2016). Flat partitions are more typically used for density estimation (Kontkanen and Myllymäki,
2007; López-Rubio, 2013; Cui et al., 2021), but they have also been used for classification (Lugosi
and Nobel, 1996; McAllester and Ortiz, 2003).

Denote by P = {R1, R2, . . . , RL} the partition of Rd, i.e., a collection of disjoint sets for which⋃L
l=1 Rl = Rd. Denote the structure function that maps the query point to the index of the partition

element it belongs into by q : Rd → {1, 2, . . . , L}. When the partition is learned from the training
data, we denote it by P(n) = π(Dn), where π(Dn) is a partitioning rule that associates the training
set with a partition of Rd.

Natural classifier for a single partition. Partitioning classifiers use the training set twice: first,
to learn the partition P(n) = π(Dn), and second, to classify the query point using the training
set points that belong to the same partition element Rq(x) as the query point x. In the multiclass
classification, the conditional label probabilities can be estimated in a natural fashion by the observed
label proportions

η̂j(x) =
1

Nq(x)

∑
i : xi∈Rq(x)

yij , (4)

where Nq(x) := |{i : xi ∈ Rq(x)}| denotes the number of training set points in the same partition
element as the query point. This standard practice can be motivated by noting that these observed
label proportions are the maximum likelihood estimates of the piecewise constant multinomial model
where the conditional label probabilities are constants at each of the partition elements.

In the multilabel case, the estimation of the conditional label probabilities by (4) can be motivated
via the PAL reduction under which the observed label proportions in Rq(x) are proportional to the
maximum likelihood estimates of the piecewise constant multinomial model. To classify the query
point, the conditional probability estimates (4) are plugged into (3), i.e., the query point is assigned
into all the classes whose probability estimate is greater than or equal to the value of the threshold
parameter τ . We call this partitioning classifier the natural classifier.

Natural classifier for an ensemble of partitions. When a collection of partitions {P(n)
t }Tt=1,

where P(n)
t := {R(t)

1 , . . . , R
(t)
Lt
}, is used as a classifier—such as in random forests (Ho, 1998;

Breiman, 2001)—the contributions of the partitions are aggregated. In this article, we consider the
most straightforward aggregation method where the conditional probability estimates are obtained as
averages of the conditional probability estimates of the individual partitions:

η̂j(x) =
1

T

T∑
t=1

η̂
(t)
j (x). (5)

The estimate of the single partition η̂
(t)
j (x) is defined as in (4) for the corresponding partition P(n)

t
and the corresponding structure function qt.
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5 Related work

The most directly relevant earlier literature consists of studies that learn space-partitioning index
structures for ANN search using supervised information. The idea of optimising the index structure
for the particular query distribution was first presented by Maneewongvatana and Mount (2001), and
later extended by Cayton and Dasgupta (2008) who formulate ANN search as a supervised learning
problem and propose a tree-based and a hashing-based algorithm for solving it. More recently, many
supervised learning to hash-methods, such as minimal loss hashing (Norouzi and Fleet, 2011), LDA
hashing (Strecha et al., 2011), and kernel-based supervised hashing (Liu et al., 2011), have also been
proposed for ANN search (see, e.g., Wang et al. (2015) or Wang et al. (2017) for a survey).

However, the earlier supervised methods pose the supervised learning problem in an indirect fashion.
This is because they, like the earlier unsupervised methods, select the candidate set using a method
which we call lookup search3: they select the corpus point into the candidate set if and only if it
belongs to the same partition element as the query point. Consequently, their objective is to learn
a partition in which the k nearest neighbors of a query point belong to the same partition element
with it. In contrast, our objective is to directly learn a partitioning classifier that predicts its nearest
neighbors correctly. We will elucidate the difference in the next section.

6 Candidate set selection for ANN search

In view of the multilabel formulation of Sec. 3, the natural classifier defined in Sec. 4 can directly be
used to select a candidate set for ANN search. However, in this section we interpret also the earlier
lookup-based candidate set selection methods (lookup search and voting search) in our multilabel
classification framework, and show that they define a classifier of a different form. We show that
this classifier—that we call the naive classifier—is in fact the natural classifier for the different
multilabel classification problem where the labels do not represent the corpus points that are the
nearest neighbors of the query point but the corpus points that belong to the same partition element
as the query point. This suggests that the natural classifier would be a more suitable candidate set
selection method for ANN search than the naive classifier. The empirical results of Sec. 8 indicate
that this is indeed the case.

Candidate set selection for a single partition. First, assume that we utilize the single fixed
partition P = {R1, . . . , RL} and the training set {(xi, yi)}ni=1 to approximate the nearest neighbors
of the query point x. The natural classifier defined in Sec. 4 selects the candidate set as

L̂(x) = {j ∈ {1, . . . ,m} | η̂j(x) > τ}, (6)

where τ ∈ [0, 1], and the conditional label probability estimates η̂j(x) = 1
Nq(x)

∑
i : xi∈Rq(x)

yij are
obtained as the observed label proportions among the training set points that belong to the same
partition element with the query point. In contrast, lookup search selects the candidate set as

L̂(x) = {j ∈ {1, . . . ,m} | cj ∈ Rq(x)}, (7)

i.e., it selects the corpus point into the candidate set if and only if it belongs to the same partition
element with the query point. When interpreted in the classification framework of Sec. 3, (7) defines
the classifier L̂(x) = {j ∈ {1, . . . ,m} | η̃j(x) > τ}, where τ ∈ [0, 1) and η̃j(x) = 1Rq(x)

(cj); we
call this a naive classifier.

We immediately observe that the naive classifier is not a natural classifier for the multilabel classi-
fication problem in which the labels are defined as yij = 1NNk(xi)(cj) as in Sec. 3. Instead, it is a
natural classifier for the different multilabel classification problem in which the labels are defined

3Often, lookup search is combined with a priority queue guided backtracking search in which the query
point is routed into more than one element in a partition, and all the corpus points that belong to these partition
elements are then selected into the candidate set. This technique is called priority search (Arya and Mount, 1993;
Silpa-Anan and Hartley, 2008) or multi-probe LSH (Lv et al., 2007), depending on whether the index structure
is tree-based or hashing-based, respectively. For clarity, we do not consider backtracking—that is mainly a
memory-saving technique—in the analysis below: it can be easily incorporated both into lookup search and our
method by allowing the structure function q to return a set of indices instead of a single index, and considering⋃

l∈q(x) Rl instead of the single partition element Rq(x).
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as ỹij = 1Rq(xi)(cj) . In other words, the naive classifier is geared towards the learning problem in
which—instead of the k nearest neighbors of the query point—the labels represent the corpus points
that belong to the same partition element as the query point. The candidate set selection method (7)
also explains why the objective of the earlier supervised methods for learning the partition differs
from ours: in these methods, the objective is to maximise the number of nearest neighbors of the
query point that belong to the same partition element with it in order to maximise the recall (while
minimising the number of non-neighbors in that element in order to maximise precision).

Candidate set selection for an ensemble of partitions. Assume that the fixed set of partitions
{Pt}Tt=1 is used to approximate the k nearest neighbors of a query point x. The natural classifier
defined in Sec. 4 selects the candidate set

L̂(x) = {j ∈ {1, . . . ,m} | η̂j(x) > τ}, (8)

as in (6), but now η̂j(x) = 1
T

∑T
t=1 η̂

(t)
j (x), where the contributions of the individual partitions

η̂
(t)
j (x) are defined as above. In contrast, the earlier (both supervised and unsupervised) methods

select the corpus point into the candidate set if and only if it belongs to the same partition element as
the query point in at least one of the T partitions. Hence, the candidate set selected by lookup search
is

L̂(x) =

{
j ∈ {1, . . . ,m} | cj ∈

T⋃
t=1

R
(t)

q(t)(x)

}
= {j ∈ {1, . . . ,m} | η̃j(x) > τ}, (9)

where η̃j(x) := 1
T

∑T
t=1 η̃

(t)
j (x), τ ∈ [0, 1

T ), and the contributions of the partitions η̃
(t)
j (x) are

defined as above.

Unlike in the case of a single partition—where the value of the threshold parameter τ ∈ [0, 1) does
not affect the classification decision of the naive classifier, since η̃j(x) ∈ {0, 1}—now τ affects the
classification decision, since η̃j(x) ∈ {0, 1

T , . . . ,
T−1
T , 1}. Hence, a tuning parameter can be added

to lookup search by allowing τ to be chosen freely as proposed by Hyvönen et al. (2016) who call the
resulting method voting search.

7 Consistency of partitioning classifiers for ANN search

The ideal index structure for ANN search always returns a candidate set that contains all the k nearest
neighbors of the query point and no other corpus points. Under the multilabel formulation, this
corresponds to a classifier for which the expected multilabel 0-1 loss EL(g(X), Y ) = P{g(X) ̸= Y }
is zero. To this end, we prove a sufficient condition for the consistency of a partitioning classifier
for ANN search under 0-1 loss. Consistency under 0-1 loss also directly implies consistency for the
other common multilabel loss functions, such as Hamming loss, precision, recall, and F -measures.
As a concrete example, we prove the consistency of the chronological k-d tree (Bentley, 1975) by
checking that this condition holds for it.

7.1 Sufficient condition for consistency

The classical theorem for proving consistency of partitioning classifiers for binary classification is:

Theorem 1. (Devroye et al. (1996), Theorem 6.1, p. 94–95) Assume that only the features X1, . . . , Xn

are used to learn the partition P(n) = π(X1, . . . , Xn). The natural classifier4 g(n) defined by P(n)

is consistent (under 0-1 loss) for binary classification, if

(i) Nq(X) →∞ in probability, and

(ii) diam
(
Rq(X)

)
→ 0 in probability,

when n→∞.
4The natural classifier for binary classification is defined as the classifier that classifies the query point into

the majority class of the training set points that belong to the same partition element with it.
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The number of the training set points in the partition element the query point x belongs to is denoted
by Nq(x) := |{i : Xi ∈ Rq(x)}|, and the diameter of a set A is defined as the maximum distance
between any two points of this set and denoted by diam(A) := sup

a, b∈A
∥a− b∥.

While this result is for binary classification, it can be readily extended to the multilabel case. However,
as a multilabel classification problem, ANN search has two distinguishing properties: (i) the Bayes
error R∗ is zero; (ii) decision boundaries between the labels consist of subsets of hyperplanes. It
turns out that in this case, the second condition of Theorem 1 is sufficient for the consistency of a
partitioning classifier:

Theorem 2. Let g(n) be a natural classifier defined by the partition P(n) = (R1, . . . , RL) and the
threshold parameter τ ∈ [0, 1) for ANN search. Assume that the distribution of X , denoted by µ, is
continuous. If diam(Rq(X))→ 0 in probability—that is, if for every ϵ > 0,

P{diam(Rq(X)) > ϵ} → 0

when n→∞, then the classifier g(n) is consistent (for 0-1 loss)—i.e., EDn
R(g(n))→ 0.

Proof. If for all the pairs of corpus points (cj , cj′), j′ ̸= j, all the points of the partition element Rl

are closer to cj than cj′ (or vice versa)—that is, if there is no such pair (cj , cj′) for which there exists
a, b ∈ Rl such that ∥a− cj∥ < ∥a− cj′∥ and ∥b− cj∥ > ∥b− cj′∥—then also η̂j(x) = ηj(x) for
each x ∈ Rl and j = 1, . . . ,m; consequently, each x ∈ Rl is classified correctly for any τ ∈ [0, 1).
Now, since for each j = 1, . . . ,m,

P{g(n)j (X) ̸= ηj(X)}
≤ P

(
∃j′ ̸= j : ∃a, b ∈ Rq(X) s.t. ∥a− cj∥ < ∥a− cj′∥, ∥b− cj∥ > ∥b− cj′∥

)
≤

∑
j′ ̸=j

P{∃a, b ∈ Rq(X) s.t. ∥a− cj∥ < ∥a− cj′∥, ∥b− cj∥ > ∥b− cj′∥},

to prove consistency of g(n) it is sufficient to show that for all j, j′ ∈ {1, . . . ,m}, j ̸= j′,

P{∃a, b ∈ Rq(X) s.t. ∥a− cj∥ < ∥a− cj′∥, ∥b− cj∥ > ∥b− cj′∥} → 0

in probability when n→∞.

Choose any j, j′, j ̸= j′, and denote the hyperplane that is halfway in between the corpus points
cj and cj′ by H := {x ∈ Rd : ∥x − cj∥ = ∥x − cj′∥}. For any t = 1, 2, . . . , let Ht denote the
set surrounding H by a margin of width 1/t. Since H1 ⊃ H2 ⊃ H3 . . . , and H = ∩∞t=1Ht, it
follows from the upper continuity of the probability measure that lim

t→∞
µ(Ht) = µ(H). Because

the Lebesgue measure of the hyperplane H in Rd is zero and µ is absolutely continuous w.r.t. the
Lebesgue measure by the assumption, then also lim

t→∞
µ(Ht) = µ(H) = 0.

Now, for any t = 1, 2, . . . , if Rq(x) crosses the hyperplane H , then either x ∈ Ht or the diameter of
the Rq(x) is greater than 1/t. Hence,

P{∃a, b ∈ Rq(X) s.t. ∥a− cj∥ < ∥a− cj′∥, ∥b− cj∥ > ∥b− cj′∥}
≤ P{X ∈ Ht or diam(Rq(X)) > 1/t}
≤ µ(Ht) + P{diam(Rq(X)) > 1/t}.

We can get µ(Ht) as small as desired by choosing a large enough t; and since by assumption the
second term is arbitrarily small when n is large enough, the result follows.

7.2 Consistency of chronological k-d tree

Next, we illustrate the utility of Theorem 2 by applying it to prove the consistency of the chronological
k-d tree (Bentley, 1975) that rotates the split directions and uses the same split direction for all the
nodes at one level of a tree. At the first level the training data is split at the median of the first
coordinates of the data points. At the second level both nodes are split at the median of the second
coordinates of the node points. At the (d+ 1)th level, the nodes are split again at the median of the
first coordinates, and so on (see Appendix C.1).
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More precisely, let X,X1, . . . , Xn ∈ Rd be i.i.d. random variables. A chronological k-d tree can
be formalized as a partitioning rule π that returns the partition P(n) = π(X1, . . . , Xn). When the
tree height is ℓ, this partition has 2ℓ elements (also called leafs). The leafs are hyperrectangles in
Rd. Some of the edges of these hyperrectangles may have an infinite length. To handle these leafs,
we introduce the notation where, for any M > 0, the hypercube [−M,M ]d divides the partition
elements R1, . . . , R2ℓ into three disjoint sets:

A := {l ∈ {1, . . . , 2ℓ} : Rl ⊂ [−M,M ]d},
C := {l ∈ {1, . . . , 2ℓ} : Rl ⊂ Rd \ [−M,M ]d},
B := {1, . . . , 2ℓ} \ (A ∪ C).

(10)

Here A is the set of indexes of the partition elements that are completely inside the hypercube
[−M,M ]d, B is the set of indexes of the partition elements that cross its boundary, and C is the set
of indexes of the partition elements that are completely outside of it.

First, we prove two auxiliary results that bound the number of nodes crossing the boundary of the box
[−M,M ]d and the combined length of the edges (in any fixed coordinate direction) of the nodes that
reside completely inside [−M,M ]d, respectively. Note that these bounds are of purely combinatorial
nature and thus do not depend on the training set. The proofs of the following results are presented in
Appendix A.
Lemma 1. For any training set Dn, it holds for the number of nodes of a chronological k-d tree—
denoted by NB := |B|—crossing the border of the hypercube [−M,M ]d that

NB ≤ 4d · 2ℓ− ℓ
d .

Lemma 2. Let j ∈ {1, . . . , d} be any coordinate direction. Denote the length of the node Rl in the
jth coordinate direction by Vl. Then for any training set Dn,∑

l∈A

Vl ≤ 4M · 2ℓ− ℓ
d .

We are now in a position to establish the consistency of the chronological k-d tree for approximate
nearest neighbor search. In view of Theorem 2 it suffices to prove that the leaf diameter converges to
zero in probability:
Theorem 3. If for the height of a chronological k-d tree holds that ℓ→∞ when n→∞, then the
leaf diameter diam(Rq(X)) converges to zero in probability.

8 Experiments

We present empirical results validating the utility of our framework. In particular, we compare the
natural classifier to the earlier candidate set selection methods discussed in Sec. 6 for different types
of unsupervised trees that have been widely used for ANN search. Specifically, we use ensembles
of randomized k-d trees (Friedman et al., 1976; Silpa-Anan and Hartley, 2008), random projection
(RP) trees (Dasgupta and Freund, 2008; Hyvönen et al., 2016), and principal component (PCA)
trees (Sproull, 1991; Jääsaari et al., 2019) (see Appendix C for detailed descriptions of these data
structures). Another consequence of the multilabel formulation of Sec. 3 is that it enables using
any established multilabel classifier for ANN search. To demonstrate this concretely, we train a
random forest consisting of standard multilabel classification trees (trained under the PAL reduction
(Reddi et al., 2019) by using multinomial log-likelihood as a split criterion) and use it as an index
structure for ANN search; it turns out that the fully supervised classification trees have an improved
performance compared to the earlier unsupervised trees on some—but, curiously, not on all—data
sets.

We follow a standard ANN search performance evaluation setting (Aumüller et al., 2019; Li et al.,
2019) by using the corpus as the training set, searching for k = 10 nearest neighbors in Euclidean
distance, and measuring performance by evaluating average recall and query time over the test
set of 1000 points. We use four benchmark data sets: Fashion (m = 60000, d = 784), GIST
(m = 1000000, d = 960), Trevi (m = 101120, d = 4096), and STL-10 (m = 100000, d = 9216).
All the algorithms are implemented in C++ and run using a single thread. We tune the hyperparameters
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by grid search and plot the Pareto frontiers of the optimal hyperparameters. Further details of the
experimental setup are found in Appendix B. The code used to produce the experimental results is
attached as supplementary material and can also be found at https://github.com/vioshyvo/
a-multilabel-classification-framework.

Comparison of candidate set selection methods. The candidate set selection method proposed
in this article is the natural classifier (8) described in Sec. 4; for completeness, we also include the
special case obtained by fixing τ = 0 in the comparison. The earlier methods are lookup search (naive
classifier (9) with τ = 0) and voting (Hyvönen et al., 2016; Jääsaari et al., 2019) (naive classifier
(9) with τ as a free tuning parameter). The results for the Trevi data set are presented in Fig. 1 and
indicate, as the discussion of Sec. 6 suggests, that the natural classifier performs better than the earlier
lookup-based methods for all types of trees (this finding holds consistently over all the data sets in
our experiments; see Fig. 2 in Appendix).
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Figure 1: Recall vs. query time (log scale) of ensembles of, RP, k-d, and PCA trees. The solid blue
line is the natural classifier proposed in this paper; the dash-dotted red line is the natural classifier with
τ = 0 that is included for completeness; the dashed green line is voting; and the double-dash-dotted
violet line is lookup search. The natural classifier is the fastest and the lookup search is the slowest of
the methods for each tree type.

Comparison of tree types. We compare the aforementioned ensembles of unsupervised (RP, KD,
and PCA) trees and the random forest consisting of supervised classification trees (RF); for all four
tree types the candidate set is selected by (8). The results are shown in Table 1. Since the random
forest (RF) leverages supervised information to learn the trees, we would expect that it is the fastest
tree-based method. Indeed, this is the case on Fashion and GIST. However, on STL-10 and Trevi,
the unsupervised PCA tree is the fastest method. We hypothesize that this is because of the high
dimensionality of STL-10 and Trevi: standard supervised classification trees employed by random
forest are restricted to axis-aligned splits, whereas PCA trees—although they use an unsupervised
split criterion—can find more informative oblique split directions. An interesting topic for future
work would be to apply supervised classification trees that can utilize oblique split directions.

9 Conclusion

We establish a general theoretical framework for ANN search by formulating candidate set selection
as a multilabel learning task. Empirical results validate our framework: a natural classifier derived
directly from the problem formulation is a strict improvement over the earlier lookup-based candidate
set selection methods. In addition, we provide a sufficient condition that guarantees consistency of a
partitioning classifier for ANN search. We verify this condition for chronological k-d trees, indicating
that—given enough training data—they retrieve a candidate set containing all the k nearest neighbors
of the query point and no other corpus points.

Limitations. Supervised ANN search methods typically have longer pre-processing times com-
pared to unsupervised methods. This is because (1) they require computing the true nearest neighbors
{yi}ni=1 of the training set points {xi}ni=1 and (2) supervised index structures are often slower to
build compared to their unsupervised counterparts (c.f. Appendix D.1). If fast index construction is
required, the second problem can be mitigated by learning trees in an unsupervised fashion, but using
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Table 1: Query times (seconds / 1000 queries) at different recall levels for the different tree types.
The fastest method in each case is typeset in boldface.

data set R (%) PCA KD RP RF

80 0.075 0.076 0.099 0.063
Fashion 90 0.111 0.126 0.172 0.095

95 0.163 0.171 0.261 0.146
80 1.330 0.958 1.009 0.705

GIST 90 2.942 2.286 2.226 1.530
95 5.641 4.451 4.598 3.253
80 0.382 0.872 1.211 0.756

STL-10 90 0.756 2.126 3.248 1.774
95 1.315 4.376 7.330 3.654

80 0.330 0.543 0.591 0.582
Trevi 90 0.684 1.464 1.468 1.234

95 1.212 3.244 3.289 2.350

them as partitioning classifiers as described in Sec. 4, since the experiments of Sec. 8 suggest that the
candidate set selection method has a more pronounced effect on the performance than the tree type.

Future research directions. While we demonstrate our approach using a random forest classifier,
we expect that the most important consequence of our work is that it enables using any type of
classifier as an index structure for ANN search. In particular, gradient boosted trees (Friedman, 2001)
are promising since they are often more accurate than random forests. Extreme classification models,
including tree-based models (Agrawal et al., 2013; Prabhu and Varma, 2014; Jain et al., 2016), sparse
linear models (Babbar and Schölkopf, 2017, 2019; Yen et al., 2017), and embedding-based neural
networks (Guo et al., 2019), are also promising model candidates for ANN search since they are
specifically tailored for multilabel classification problems with extremely large label spaces.

Our formulation enables analyzing ANN search in the statistical learning framework, thus opening
multiple theoretical research questions: (1) Can we establish a sufficient condition for strong consis-
tency? (2) Can we prove consistency of more adaptive partitioning classifiers, such as PCA trees or
classification trees? (3) Can we establish faster than logarithmic convergence rates? The last question
is especially interesting, since prediction times of trees are logarithmic: a positive answer would
theoretically justify decreasing query times by increasing the training set size.
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A Proofs

Proof of Lemma 1

Proof. The border of the hypercube consists of (d − 1)-dimensional faces. Choose a coordinate
direction j ∈ {1, . . . , d} and consider a (d − 1)-face that is orthogonal to that coordinate axis.
Denote the number of nodes crossing that (d − 1)-face by N

(j)
B . Before any splits there is one

node—the whole feature space Rd—that crosses it. Splitting a node that crosses that (d − 1)-
face at a coordinate direction other than j creates two nodes crossing it if the splitting hyperplane
intersects with [−M,M ]d (if the splitting hyperplane does not intersect with [−M,M ]d then it does
affect N (j)

B ). Splitting at the jth direction does not increase N
(j)
B since the splitting hyperplane is

perpendicular to the (d− 1)-face we consider and so cannot cross it.

Therefore, if ℓ is a multiple of d, we have N
(j)
B ≤ 2ℓ−

ℓ
d since each full round of d splits contains

d − 1 splits orthogonal to the jth coordinate direction, each of which may double the number of
nodes crossing the (d − 1)-face, and one split parallel to the jth coordinate direction that doesn’t
increase the number. If ℓ is not a multiple of d, then

N
(j)
B ≤ 2ℓ−⌊ ℓ

d ⌋ ≤ 2ℓ−
ℓ
d+1

because the last incomplete round of splits may not contain a split at the jth coordinate direction. Since
for each coordinate direction a d-dimensional hypercube has two (d− 1)-faces that are orthogonal to
that coordinate axis, we have5

NB ≤ 2

d∑
j=1

N
(j)
B ≤ 4d · 2ℓ− ℓ

d .

Proof of Lemma 2

For each l = 1, . . . , 2ℓ, denote the length of the hyperrectangle R′
l := Rl ∩ [−M,M ]d in the jth

coordinate direction by V ′
l . Clearly, Vl = V ′

l for each l ∈ A by the definition of the set A. Thus,∑
l∈A

Vl =
∑
l∈A

V ′
l ≤

2ℓ∑
l=1

V ′
l .

Before any splits, there is one node with V ′
l = 2M . Splitting a node in a coordinate direction other

than j creates two child nodes with the same length in the jth coordinate direction as the parent node,
and thus doubles the contribution of the parent node to the sum over the nodes6. When we split a
node in the jth coordinate direction, the sum of the lengths of the child nodes in the jth direction
equals the length of the parent node in that direction; thus, the split does not affect the sum over the
nodes. Hence, we have

2ℓ∑
l=1

V ′
l ≤ 2M · 2ℓ− ℓ

d (11)

when ℓ is a multiple of d. When ℓ is not a multiple of d, the last incomplete round may not contain a
split in the jth coordinate direction, and thus

2ℓ∑
l=1

V ′
l ≤ 2M · 2ℓ−⌊ ℓ

d ⌋ ≤ 4M · 2ℓ− ℓ
d .

5Since we are proving an upper bound it does not matter that we double count nodes that cross more than
one (d− 1)-face.

6Here we assume that the splitting hyperplane intersects with [−M,M ]d. If the splitting hyperplane does
not intersect with [−M,M ]d, then the split does not increase

∑2ℓ

l=1 V
′
l . Thus, the inequality in (11) holds as

an equality if and only if all the splitting hyperplanes that are not orthogonal to the jth coordinate direction
intersect with [−M,M ]d.
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For completeness, we prove here the following well-known variation of Markov’s inequality.

Lemma 3. Suppose H is an event, a > 0, and X is a non-negative random variable for which
E|X| <∞. Then,

P{X > a,H} ≤ E[1HX]

a
.

Proof. We can write

E[1HX] ≥ E[1HX1{X > a}] ≥ aE[1H1{X > a}] = aP{X > a,H},

and the result follows by dividing by a.

Proof of Theorem 3

Proof. Choose a coordinate direction j ∈ {1, . . . , d} and denote the length of an edge of the
hyperrectangle Rl in that direction by Vl. Since the coordinate direction was chosen arbitrarily,
it suffices to show that Vq(X) converges to zero in probability to prove that also the cell diameter
converges to zero in probability.

For any training set size n, define ℓ′ := min(ℓ, ⌊log2 log2 n⌋). Since for any training set7 Dn the
probability P{Vq(X) > δ |Dn} is non-increasing w.r.t. to the tree height and ℓ′ ≤ ℓ, in order to prove
that P{Vq(X) > δ} → 0 for the original tree height ℓ, it is sufficient to show that it goes to zero for
the tree height ℓ′.

For any θ > 0, there exists M > 0 s.t. P{X /∈ [−M,M ]d} < θ. The box [−M,M ]d divides any
partition of Rd into three disjoint sets A, B, and C as defined in (10) that correspond to the indexes of
the nodes completely inside [−M,M ]d, the indexes of the nodes crossing its border and the indexes
of the nodes completely outside of it, respectively8. We can now decompose the probability of the
event {Vq(X) > δ} into three parts corresponding to the sets A, B, and C:

P{Vq(X) > δ} ≤ P{Vq(X) > δ, q(X) ∈ A}+ P{q(X) ∈ B}+ P{q(X) ∈ C}. (12)

Choose ϵ > 0 and denote the event that no partition element has a probability mass larger than
(1 + ϵ)/2ℓ

′
by

G :=

2ℓ
′⋂

l=1

{
µ(Rl) ≤

1 + ϵ

2ℓ′

}
,

where µ(A) := P{X ∈ A} is the probability distribution of X for any measurable set A. Our
strategy is to first handle this case where all the leafs contain an approximately equal probability
mass, and then bound the probability of GC by applying the Vapnik-Chervonenkis inequality to show
the uniform convergence of the empirical distribution of X to its true distribution in the class of leafs
of a chronological k-d tree, i.e., in the class of hyperrectangles in Rd. To this end, we further partition
the right hand side of (12) as

P{Vq(X) > δ} ≤ P{Vq(X) > δ, q(X) ∈ A,G}︸ ︷︷ ︸
I

+P{q(X) ∈ B,G}︸ ︷︷ ︸
II

+P (GC)︸ ︷︷ ︸
III

+P{q(X) ∈ C}︸ ︷︷ ︸
IV

and bound these four terms.

Term IV: Since P{q(X) ∈ C} ≤ P{X /∈ [−M,M ]d} < θ, we can get this term as small as desired
by choosing a small enough θ.

Term I: By applying Lemma 3 (with the event {q(X) ∈ A} ∩G), we see that

P{Vq(X) > δ, q(X) ∈ A,G} ≤
E
[
1GVq(X)1{q(X) ∈ A}

]
δ

.

7To keep notation consistent throughout the article, we denote the training set also here by Dn :=
{(Xi, Yi)}ni=1. However, it should be observed that the chronological k-d tree uses only the inputs X1, . . . , Xn

to learn the partition; thus, the learned partition does not depend on the labels Y1, . . . , Yn.
8We define the sets A, B, and C here for a tree of height ℓ′.
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Therefore, it suffices to bound E
[
1GVq(X)1{q(X) ∈ A}

]
, for which we have

E
[
1GVq(X)1{q(X) ∈ A}

]
= E

[
1GE

[
Vq(X)1{q(X) ∈ A} |Dn

]]
= E

1G

2ℓ
′∑

l=1

µ(Rl)Vl1{l ∈ A}


= E

[
1G

∑
l∈A

µ(Rl)Vl

]

≤ 1 + ϵ

2ℓ′
E

[∑
l∈A

Vl

]

≤ 1 + ϵ

2ℓ′
· 4M · 2ℓ

′− ℓ′
d

= 4M · 1 + ϵ

2ℓ′/d
,

(13)

where the outermost expectation on the right hand side is w.r.t. Dn, the first inequality follows from
the definition of G, and the second inequality follows from Lemma 1. Since by assumption ℓ′ →∞
when n→∞, also P{Vq(X) > δ, q(X) ∈ A,G} → 0.

Term II: Applying a similar technique as in (13), we have

P{q(X) ∈ B,G} = E [1GP{q(X) ∈ B |Dn}]

= E

1G

2ℓ
′∑

l=1

1{l ∈ B}µ(Rl)


≤ 1 + ϵ

2ℓ′
E [NB ]

≤ 1 + ϵ

2ℓ′
· 4d · 2ℓ

′− ℓ′
d

= 4d · 1 + ϵ

2ℓ′/d
,

where the expectation is w.r.t. Dn, the first inequality follows from the definition of G and the second
inequality follows from Lemma 2. Hence, also P{q(X) ∈ B,G} → 0 when n→∞.

Term III: Finally, we bound the probability of the event GC . LetR be the class of all hyperrectangles
in Rd. The Vapnik-Chervonenkis dimension ofR is 2d (see, e.g., Theorem 13.8. by Devroye et al.
(1996, p. 220-221)), and hence we have s(R, n) ≤ n2d for its shatter coefficient (see, e.g., Theorem

13.3. by Devroye et al. (1996, p. 218)). If n ≥ 2 · log2 n
ϵ ≥ 2 · 2

ℓ′

ϵ , then 1
n ≤

1
2 ·

ϵ
2ℓ′

. This means that
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for large enough n, we have

P (GC) = P

{
∃l s.t. µ(Rl) >

1 + ϵ

2ℓ′

}
= P

{
∃l s.t. µ(Rl)−

(
1

2ℓ′
+

1

n

)
>

ϵ

2ℓ′
− 1

n

}
≤ P

{
∃l s.t. µ(Rl)− µn(Rl) >

ϵ

2ℓ′
− 1

n

}
≤ P

{
∃l s.t. µ(Rl)− µn(Rl) >

ϵ

2ℓ′+1

}
≤ P

{
sup
R∈R
|µ(R)− µn(R)| > ϵ

2ℓ′+1

}
≤ 8s(R, n) exp

{
− nϵ2

128 · 22ℓ′
}

≤ 8n2d exp

{
− nϵ2

128 · 22ℓ′
}

≤ 8n2d exp

{
− nϵ2

128(log2 n)
2

}
→ 0

(14)

when n→∞. The first inequality on the right hand side of (14) follows because for the empirical
measure—denoted by µn(A) := 1

n

∑n
i=1 1A(Xi) for any measurable set A—of any leaf Rl it holds

that µn(Rl) ≤ 1
2ℓ′

+ 1
n . The fourth inequality follows from the Vapnik-Chervonenkis inequality

(Vapnik and Chervonenkis, 1971); we use the version presented in Theorem 12.5. by Devroye et al.
(1996, p. 197-198). The last inequality follows because 22ℓ

′ ≤ (log2 n)
2 by the definition of ℓ′.

B Experimental setup

All the algorithms, hyperparameter combinations, and code used in the experiments are in-
cluded as supplementary material and can also be found at https://github.com/vioshyvo/
a-multilabel-classification-framework.

B.1 Computing environment

The experiments were ran on a machine with two Xeon E5-2680 v4 2.4GHz processors, 256GB
RAM and CentOS 7 as the operating system. All queries were ran using only a single thread. The
algorithms and test code were written in C++14 and compiled using GCC 5.4.0 with the optimization
flags -Ofast and -march=native.

B.2 Data sets

Table 2 contains the specifications of the data sets. We used four publicly available and commonly used
benchmark data sets (Fashion9, GIST10, STL-1011, and Trevi12) consisting of raw or preprocessed
images. We randomly divided the original data sets into the corpus, the validation set (nvalidation =
1000), and the test set (ntest = 1000). The corpus {ci}mi=1 was used as a training set. Since in the
previous benchmarks for ANN search (Aumüller et al., 2019; Li et al., 2019) the problem is not
considered in the machine learning setting, they do not use a distinct test set, but present the optimal
results on the validation set. To follow this standard practice, we also present the results on the
validation set, but note that the results were stable between the validation and test sets; there was
some random variability, but we observed no signs of overfitting to the validation set.

9https://github.com/zalandoresearch/fashion-mnist
10http://corpus-texmex.irisa.fr
11https://cs.stanford.edu/ acoates/stl10
12http://phototour.cs.washington.edu/patches
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Table 2: Data sets used in the experiments

Data set corpus size m dimension d

Fashion 58000 784
GIST 100000 960
STL-10 98000 9216
Trevi 99120 4096

B.3 Hyperparameter settings

According to our initial experiments, the performance of each type of a tree was robust w.r.t. its spar-
sity/randomization parameter (the number of the uniformly at random chosen coordinate directions
a ∈ {1, . . . , d} from which the optimal split direction was chosen for multiclass classification trees;
the dimensionality a of the random subspace in which first principal component was approximated
for PCA trees; the expected number a of the non-zero components in the random vectors onto which
the node points are projected in RP trees; and the number o of the highest variance directions of the
node points from which the split direction was chosen uniformly at random in k-d trees). Therefore,
we kept these parameters fixed in the final experiments: for multiclass classification trees and the
PCA trees we used the value a = ⌈

√
d⌉; for the RP trees the value a = 1/

√
d; and for the k-d trees

the value o = 5. Further, we set the learning rate of the iterative PCA algorithm in PCA trees to
γ = 0.01 and the maximum number of iterations to t = 20.

For the recall levels on the range [0.5, 0.99] considered in the article, the optimal numbers of trees
T were generally on the range [5, 200], the optimal depths of the trees were on the range [10, 15],
and the optimal values of the threshold parameter τ were on the range [1, 20] for PCA, RP, and k-d
trees that use the raw counts as score function values. For multiclass classification trees that use the
probability estimates (4) to select the candidate set, the optimal values of the threshold parameter
τ were on the range [0.00001, 0.005]. We observed that using a value k′ > k to learn the trees
sometimes improved performance. We tested values k′ ∈ {10, 50, 100} for learning the trees, with
k′ = 10 or k′ = 50 usually being the optimal parameter value when k = 10.

For the other algorithms, we used the same hyperparameters as in ANN-benchmarks13 as a starting
point, and in many cases used even larger grids to ensure that the optimal hyperparameter settings
were found.

C Data structures

In this section we review the five types of trees considered in this article (see C.1–C.5 below). Random
projection, PCA, k-d trees and chronological k-d trees have been widely used for ANN search (see,
e.g., (Silpa-Anan and Hartley, 2008; Muja and Lowe, 2014; Dasgupta and Sinha, 2015; Jääsaari et al.,
2019)), whereas the multiclass classification tree is a standard data structure for classification. For
completeness, we include the full descriptions of the algorithms here.

We begin by motivating the natural classifier (6) from the point of view of the multilabel problem
reductions (see Reddi et al. (2019); Menon et al. (2019)). First note that since the label set L(X) is a
deterministic function of the query point X—which means that the conditional label probabilities
η1(x), . . . , ηm(x) are all equal to either 0 or 1—the Bayes classifier for 0-1 loss is obtained by
thresholding these label probabilities by any τ ∈ [0, 1). As a corollary, the same holds also for other
less strict loss functions, such as precision, recall, and Hamming loss. This justifies following the
common practice of estimating the conditional label probabilities by reducing the original multilabel
classification problem into a series of binary or multiclass classification problems (Menon et al.,
2019).

In the pick-all-labels (PAL) (Reddi et al., 2019) reduction, a separate multiclass observation is created
from each positive label, whereas in in the one-versus-all (OVA) reduction, each of the m labels is
modeled as an independent binary classification problem. In the case of ANN search the maximum
likelihood estimates for the label probabilities under the PAL and OVA reductions—i.e., under the

13https://github.com/erikbern/ann-benchmarks/blob/master/algos.yaml
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multinomial and binomial models, respectively—are θ̂PAL = 1
nk

∑n
i=1 yij and θ̂OVA = 1

n

∑n
i=1 yij .

Since the size of the label set L(x) is always k, the two estimates are proportional to each other,
θ̂OVA = kθ̂PAL, and hence, given the partitionP , the parameter estimates of the natural classifier (6)—
i.e., observed label proportions among the training set points in a given partition element—minimise
the log-likelihood under both reductions.

Motivated by the above, we use the natural classifier (6) for prediction in combination with all tree
types. When an ensemble of trees is used as a classifier, we compute the conditional label probability
estimates of the ensemble as in (5) by averaging the contributions of the individual trees.

C.1 Chronological k-d tree

The chronological k-d tree (Bentley, 1975) was the first data structure proposed for speeding up
nearest neighbor search. It rotates the split directions and uses the same split direction for all the
nodes at one level of a tree. At the first level the training data is split at the median of the first
coordinates of the data points. At the second level both nodes are split at the median of the second
coordinates of the node points. At the (d+ 1)th level, the nodes are split again at the median of the
first coordinates, and so on (see Algorithm 1). More adaptive version of the k-d tree that splits at the
coordinate direction in which the node points have the highest variance was proposed by Friedman
et al. (1976); we use a randomized version of this adaptive k-d tree (see Sec. C.3 and Algorithm 3) in
the experiments of this article.

Algorithm 1 Grow a chronological k-d tree (Bentley, 1975)
1: Input: a set of node points X ⊂ {x1, . . . , xn}, current level ℓ′, maximum height ℓ
2: Output: a node of a tree
3: procedure GROW-KD(X , ℓ′, ℓ)
4: if ℓ′ = ℓ then
5: return X node as a leaf node
6: r̂ ← (ℓ′ modulo d) + 1
7: ŝ← median of the r̂th coordinates of the node points
8: left← GROW-KD({xi ∈ X : xir̂ ≤ ŝ}, ℓ′ + 1, ℓ)
9: right← GROW-KD({xi ∈ X : xir̂ > ŝ}, ℓ′ + 1, ℓ)

10: return (left, right, r̂, ŝ) as an inner node

C.2 Multiclass classification tree

As discussed at the beginning of the section, the maximum likelihood estimates of the piecewise
constant model under both the PAL and OVA reductions coincide in the special case of ANN search.
Thus, in principle it would make no difference which one of these reductions we employed to
learn the classification trees. However, in practice computation of the binomial likelihood requires
keeping track of the contributions of the negative labels which is inconvenient when the label
space is large. Thus, we employ the PAL reduction where each positive label is modeled by a
separate multiclass observation, and learn the standard multiclass classification trees by greedily
maximising the multinomial log-likelihood (i.e., use the multiclass cross-entropy as a split criterion);
see Algorithm 2 for details.

To grow a random forest, we randomize the multiclass classification trees by optimising the split
point only in randomly chosen a = ⌈

√
d⌉ coordinate directions at each node of a tree. We do not

use bootstrap samples, but fit each tree to the original training data. To decrease learning time, we
subsample 100 training points at each node (if node size > 100), and use only this subset to optimize
the splits; we did not observe any negative impact on prediction performance.

C.3 k-d tree

Algorithm 3 details the recursive algorithm for growing a randomized k-d tree. As in multiclass clas-
sification trees, the splits are restricted to the directions of the coordinate axes. In k-d trees (Friedman
et al., 1976) the normal of the splitting hyperplane is chosen as the coordinate direction r ∈ {1, . . . , d}
along which the node points have the highest variance. The split point ŝ is chosen as the median of
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Algorithm 2 Grow a randomized multiclass classification tree
1: Input: a set of node points X ⊂ {x1, . . . , xn}, current depth, maximum depth ℓ, sparsity

parameter a
2: Output: a node of a tree
3: procedure GROW(X , depth, ℓ, a = ⌈

√
d⌉)

4: if depth = ℓ then
5: return X as a leaf node
6: D ← a random unique dimensions from {1, . . . , d}
7: (maxgain, r̂, ŝ)← (0, 0, 0)
8: N ← |X|
9: for r ∈ D do

10: let s1 ≤ s2 ≤ · · · ≤ sN be the rth coordinate of points x ∈ X sorted in ascending order
11: for s ∈ {s1, . . . , sN} do
12: Xleft ← {xi ∈ X : xir ≤ s}; Nleft = |Xleft|
13: Xright ← {xi ∈ X : xir > s}; Nright = |Xright|
14: for j ∈ {1, . . . ,m} do
15: v

(left)
j ←

∑
xi∈Xleft

yij

16: v
(right)
j ←

∑
xi∈Xright

yij
17: vj ←

∑
xi∈X yij

18: θ̂
(left)
j := v

(left)
j /(kNleft)

19: θ̂
(right)
j := v

(right)
j /(kNright)

20: θ̂j := vj/(kN)

21: gain←
∑m

j=1 v
(left)
j log θ̂

(left)
j +

∑m
j=1 v

(right)
j log θ̂

(right)
j −

∑m
j=1 vj log θ̂j

22: if gain > maxgain then
23: (maxgain, r̂, ŝ)← (gain, r, s)

24: if maxgain ≤ 0 then
25: return X as a leaf node
26: left← GROW({xi ∈ X : xir̂ ≤ ŝ}, depth + 1, ℓ, a)
27: right← GROW({xi ∈ X : xir̂ > ŝ}, depth + 1 ℓ, a)
28: return (left, right, r̂, ŝ) as an inner node

Algorithm 3 Grow a randomized k-d tree (Silpa-Anan and Hartley, 2008)
1: Input: a set of node points X ⊂ {x1, . . . , xn}, current level, maximum height ℓ, the number of

highest variances directions from which the split direction is sampled o
2: Output: a node of a tree
3: procedure GROW-KD(X , level, ℓ, o = 5)
4: if level = ℓ then
5: return X as a leaf node
6: D ← set of o coordinate directions in which the node points have the highest variance
7: r̂ ← uniformly at random sampled dimension from the set D
8: ŝ← median of r̂th coordinates of the node points
9: left← GROW-KD({xi ∈ X : xir̂ ≤ ŝ}, level + 1, ℓ, o)

10: right← GROW-KD({xi ∈ X : xir̂ > ŝ}, level + 1 ℓ, o)
11: return (left, right, r̂, ŝ) as an inner node

the r̂th coordinate of the node points. To grow an ensemble of randomized trees, we use the random-
ization scheme proposed by Silpa-Anan and Hartley (2008): instead of splitting at the direction of the
highest variance, we draw uniformly at random one of the o highest variance directions and use it as
a split direction r̂. We use the default value o = 5 recommended by Muja and Lowe (2014) for this
hyperparameter.
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C.4 PCA tree

In a PCA tree (Sproull, 1991), the projection direction at each node is the first principal component,
i.e. the direction the node points have the greatest variance when projected onto. PCA trees are on
the one hand slow to compute, as computing exact PCA is expensive, and on the other hand they are
deterministic and thus multiple trees cannot be grown to boost accuracy.

To solve the first problem, McCartin-Lim et al. (2012) proposed an approximate PCA tree, which
uses gradient descent updates to approximate the first principal component of the data at each node
of the tree. To address the second problem, Jääsaari et al. (2019) proposed a sparse approximate
PCA tree, which draws at each node of the tree uniformly at random only a =

√
d dimensions, and

computes the approximate first principal component in the subspace defined by these dimensions.

The gradient descent update for approximate PCA is

rt := rt−1 + γ Cov(Z)rt−1, rt := rt/ ∥rt∥2 ,

where rt is the projection vector at time t, Z is a matrix containing the data, and γ is the learning rate
which we fix as 0.01. We did not observe further tuning of this hyperparameter to be necessary.

Algorithm 4 details a recursive algorithm for growing a sparse approximate PCA tree. Algorithm 5
details the actual approximate PCA algorithm used to find the split direction. On line 7, the matrix Z
is formed by taking the vectors of the current points X as columns of a matrix and then slicing only
the rows (dimensions) that were randomly selected into the set D on line 6. The sample covariance
matrix C is formed from Z on lines 8-9. Lines 10-11 initialize the projection vector from the unit
sphere, while lines 12-17 implement the gradient descent update described above. By default, we do
t = 20 iterations of gradient descent, unless the ℓ1 norm of the projection vector changes by less than
ϵ = 0.01 in a single iteration.

Algorithm 4 Grow a randomized PCA tree (Jääsaari et al., 2019)
1: Input: a set of node points X ⊂ {x1, . . . , xn}, current depth, maximum depth ℓ, sparsity

parameter a, maximum number of iterations t, learning rate γ, threshold parameter ϵ
2: Output: a node of a tree
3: procedure GROW(X , depth, ℓ, a = ⌈

√
d⌉, t = 20, γ = 0.01, ϵ = 0.01)

4: if depth = ℓ then
5: return X as a leaf node
6: direction← PCA-GENERATE-SPLIT-DIRECTION(X, a, t, γ, ϵ)
7: proj← PROJECT(X , direction)
8: ŝ← MEDIAN(proj)
9: Xleft ← points in X for which proj ≤ ŝ

10: Xright ← points in X for which proj > ŝ
11: left← GROW(Xleft, depth + 1, ℓ, a, t, γ, ϵ)
12: right← GROW(Xright, depth + 1, ℓ, a, t, γ, ϵ)
13: return (left, right, direction, ŝ) as an inner node

C.5 Random projection tree

Algorithm 6 describes a process of growing a sparse random projection (RP) tree. In RP trees
(Dasgupta and Freund, 2008; Dasgupta and Sinha, 2015), the normal of the splitting hyperplane is
chosen uniformly at random from d-dimensional standard normal distribution N(0, I). The node
points are projected into this random vector, and the node is split at the median of the projections.
Hyvönen et al. (2016) proposed a sparse variant, where the components of the random vectors
are generated from the standard normal distribution with the probability a, and are zero with the
probability 1− a (see Algorithm 7). For this hyperparameter we use the default value a = 1/

√
d as

recommended by Hyvönen et al. (2016). This decreases both the index construction time and the
query routing time by a factor of

√
d compared to the original dense RP trees.
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Algorithm 5 Generate projection vector for a randomized PCA tree (Jääsaari et al., 2019)
1: Input: a set of node points X ⊂ {x1, . . . , xn}, sparsity parameter a, maximum number of

iterations t, learning rate γ, threshold parameter ϵ
2: Output: an approximate first principal component p in a-dimensional subspace; observe that p

has only a nonzero components.
3: procedure PCA-GENERATE-SPLIT-DIRECTION(X, a, t, γ, ϵ)
4: N ← |X|
5: initialize d-dimensional vector p with zeros
6: D ← a random unique dimensions from 1, . . . , d
7: Z ← points in X with all components but those in D removed
8: M ← Z(IN − 1

N 11T)ZT

9: C ← 1
N−1MMT

10: r ← Xa(0, I)
11: r ← r/∥r∥2
12: for i ∈ {1, . . . , t} do
13: r′ ← r
14: r ← r + γCr
15: r ← r/∥r∥2
16: if ∥r − r′∥1 < ϵ then
17: break
18: j ← 1
19: for i ∈ D do
20: p[i]← r[j]
21: j ← j + 1

22: return p

Algorithm 6 Grow a sparse RP tree (Hyvönen et al., 2016)
1: Input: set of node points X ⊂ {x1, . . . , xn}, current depth, maximum depth ℓ, sparsity parame-

ter a
2: Output: node of a tree
3: procedure GROW-RP(X , depth, ℓ, a = 1/

√
d)

4: if depth = ℓ then
5: return X as a leaf node
6: direction← RP-GENERATE-SPLIT-DIRECTION(a)
7: proj← PROJECT(X , direction)
8: ŝ← MEDIAN(proj)
9: Xleft ← points in X for which proj ≤ ŝ

10: Xright ← points in X for which proj > ŝ
11: left← GROW-RP(Xleft, depth + 1, ℓ, a)
12: right← GROW-RP(Xright, depth + 1, ℓ, a)
13: return (left, right,direction, ŝ) as an inner node

Algorithm 7 Generate a normal of the splitting hyperplane for a sparse RP tree (Hyvönen et al.,
2016)

1: Input: sparsity parameter a that is the expected proportion of non-zero components in the output
vector

2: Output: a random d-dimensional vector
3: procedure RP-GENERATE-SPLIT-DIRECTION(a)
4: initialize d-dimensional vector p with zeros
5: for i ∈ {1, . . . , d} do
6: if RANDOM(0, 1) ≤ a then
7: generate p[i] ∼ N(0, 1)

8: return p
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D Additional experimental results

D.1 Index construction times

The index construction times of the algorithms at the optimal parameters for the recall levels R =
0.8, 0.9, 0.95 are shown in Table 3. The computation time for finding the nearest neighbors (i.e., the
labels) of the corpus points is not included in the index construction times, since they are computed
only once for each data set; they are found in Table 5 (in the column "exact").

The ensembles of unsupervised trees are relatively fast to build, especially on the high-dimensional
data sets: on STL-10, PCA trees have the fastest query times, and are an order of magnitude faster to
train compared to the graph and quantization methods.

The multiclass classification trees (RF) are slower to train compared to the unsupervised (PCA, KD,
and RP) trees. We expect that their training times could be decreased by standard techniques, such as
using weighted quantile sketches (Greenwald and Khanna, 2001; Zhang and Wang, 2007; Chen and
Guestrin, 2016) when optimizing the split points.

Table 3: Index building time (seconds) at optimal parameters. The fastest time for each recall level is
typeset in bold.

data set R (%) PCA KD RP RF ANNOY HNSW IVF-PQ

80 2.014 0.929 1.298 14.422 1.244 1.518 5.867
Fashion 90 1.621 1.500 1.284 25.591 11.564 1.690 5.867

95 1.847 2.208 1.925 45.683 11.564 1.518 5.867

80 27.732 27.162 30.520 131.430 16.349 19.114 13.031
GIST 90 30.313 36.664 56.624 300.340 62.931 21.560 13.031

95 30.313 49.707 48.056 300.340 8.319 26.456 13.031

80 4.497 25.426 12.204 316.790 32.036 93.393 92.577
STL-10 90 8.891 30.814 12.145 647.320 489.482 132.500 92.577

95 7.918 28.286 12.145 466.520 489.480 201.070 92.577

80 4.900 11.158 10.185 420.250 141.794 60.044 43.520
Trevi 90 18.937 13.886 10.169 420.250 141.790 60.044 43.520

95 18.937 12.432 11.261 420.250 141.790 60.044 43.520

D.2 Comparison to graph and quantization methods

To empirically justify studying partition-based ANN algorithms, we also include in the comparison
Hierarchical Navigable Small World (HNSW) (Malkov and Yashunin, 2018) graphs and Inverted
File Product Quantization (IVF-PQ) Jegou et al. (2010), that were the fastest graph-based and the
fastest quantization-based algorithm, respectively, according to ANN-benchmarks (Aumüller et al.,
2019) project at the time of its publication14. For completeness, we also include the commonly-used
tree-based method ANNOY15 in the comparison. See Table 1 for the results. We emphasize that this
is not a benchmark article with the goal of proposing a single ANN algorithm and demonstrating
its superiority over the competition—rather, we aim to establish a widely applicable theoretical
framework for partition-based ANN search.

D.3 Comparison of candidate set selection methods: all data sets

Figure 2 contains the results of the comparison between the candidate set selection for all the four
data sets. The results validate the theoretical findings: using space-partitioning trees as natural
classifiers to select the candidate set improves their performance consistently for all the tree types and

14As of May 2022, the fastest graph-based method is NGTQG (https://github.com/yahoojapan/NGT/
blob/master/bin/ngtqg/README.md), the fastest quantization-based algorithm is SCANN (Guo et al., 2020)
(see http://ann-benchmarks.com/index.html for updated results).

15https://github.com/spotify/annoy
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Table 4: Query times (seconds / 1000 queries) at different recall levels for the different tree types.
The fastest method in each case is typeset in boldface.

data set R (%) PCA KD RP RF ANNOY HNSW IVF-PQ

80 0.075 0.076 0.099 0.063 0.193 0.064 0.266
Fashion 90 0.111 0.126 0.172 0.095 0.296 0.089 0.291

95 0.163 0.171 0.261 0.146 0.419 0.097 0.340

80 1.330 0.958 1.009 0.705 2.525 0.524 0.872
GIST 90 2.942 2.286 2.226 1.530 5.973 0.819 2.037

95 5.641 4.451 4.598 3.253 7.477 1.212 2.657

80 0.382 0.872 1.211 0.756 21.110 1.473 6.140
STL-10 90 0.756 2.126 3.248 1.774 24.826 2.717 6.860

95 1.315 4.376 7.330 3.654 35.459 3.963 6.860

80 0.330 0.543 0.591 0.582 5.259 0.705 1.677
Trevi 90 0.684 1.464 1.468 1.234 9.921 1.202 1.892

95 1.212 3.244 3.289 2.350 17.172 1.896 2.655

data sets compared to retrieving the candidate set in the lookup-based paradigm (lookup search and
voting). Voting also always outperforms lookup search—this is not surprising since lookup search is
a special case of voting with τ = 0 as discussed in Sec. 5. For completeness, we also include the
corresponding special case of the natural classifier with τ = 0 in the comparison.

D.4 Training classifiers with noisy labels

The disadvantage of the supervised ANN search algorithms compared to the purely unsupervised
algorithms is that they require computing the true nearest neighbors {yi}ni=1 of the training set points
{xi}ni=1, which is an O(nmd) operation. This is not a problem for the benchmark data sets used in
this article—for the largest data set (STL-10, n = 98000, m = 98000, d = 9216), computing the
ground truth took 50 minutes on a single machine—but in the typical applications of ANN search the
corpus size may be hundreds of millions or even billions.

The labels used to train the classifier do not have to be exact. We can also compute the approximate
nearest neighbors of the training set {xi}mi=1 and use them as labels {yi}mi=1 to train the classifier.
For instance, using approximate nearest neighbors computed at average recall level of 90% amounts
to using noisy labels with 10% noise.

To test how the noisy labels affect the performance, we fit the random forest to training sets with
10%, 20%, 30%, 40%, and 50% label noise. The noisy labels are obtained by running the MRPT
algorithm (Hyvönen et al., 2016) (i.e., an ensemble of RP trees where the candidate set is selected by
voting) in combination with the automatic hyperparameter tuning algorithm (Jääsaari et al., 2019) to
find the approximate nearest neighbors of the training set points with recall levels 90%, 80%, 70%,
60%, and 50%, respectively.

The results (c.f. Fig 3) indicate that tree-based classifiers are robust with respect to label noise:
training the random forest with 10% label noise has no visible effect on the performance of the
algorithm, and even training on labels with 50% noise has very little effect.

Computing times for exact and approximate nearest neighbors for the training set are found on Table
5 for all the four data sets. The results indicate that significant savings in preprocessing time can be
obtained by using noisy labels: for instance, on STL-10 computing the exact computation took 50
minutes, whereas the approximate computation took only 1-10 minutes depending on the recall level.
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Figure 2: Recall vs. query time (log scale) of ensembles of, RP, k-d, and PCA trees. The solid blue
line is the natural classifier proposed in this paper; the dash-dotted red line is the natural classifier with
τ = 0 that is included for completeness; the dashed green line is voting; and the double-dash-dotted
violet line is lookup search. The natural classifier is the fastest and the lookup search is the slowest of
the methods for each tree type.

Table 5: Computation times for exact (brute force) and noisy (MRPT algorithm) labels in seconds.
The percentage is the average number of correct approximate nearest neighbors.

data set exact 95% 90% 70% 50%

Fashion 105.8 5.6 3.1 1.8 1.0
GIST 371.7 92.7 61.9 20.2 10.0
Trevi 1450.2 118.6 104.4 31.4 24.1
STL-10 2992.7 596.3 409.0 97.2 66.5
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Figure 3: Recall vs. query time (log scale) of a random forest trained with different amounts of label
noise on the Fashion data set. RF-100% is the random forest trained using the exact k-nn matrix,
RF-90% is the random forest trained using approximate k-nn matrix with that contains on average
90% of the correct neighbors, etc. Allowing 10% noise in labels has no visible effect on performance,
and even allowing 50% noise has very little effect.
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